Kernels
BoundaryIntegralEquations.greens3d!
— Functiongreens3d!(integrand,r,k)
Green's function for the Helmholtz Equation in 3d:
\[\frac{e^{ikr_j}}{4\pi r_j}\]
BoundaryIntegralEquations.freens3d!
— Functionfreens3d!(integrand,r,interpolation,sources,normals,k)
Normal derivative of the 3D Helmholtz Green's function with respect to interpolation nodes:
\[\frac{e^{ikr_j}}{4\pi r_j^3}(ikr_j - 1) (x_j - y)\cdot n\]
BoundaryIntegralEquations.freens3dk0!
— Functionfreens3dk0!(integrand,r,interpolation,sources,normals)
freens3d! with k=0.
\[-\frac{(x_j - y)\cdot n}{4\pi r_j}\]
BoundaryIntegralEquations.onefunction!
— Functiononefunction!(integrand,r,k)
onefunction!(integrand,r,interpolation,source,normals)
onefunction!(integrand,r,interpolation,source,normals,k)
Fills integrand
with ones. Other inputs disregarded. Can be used to compute surface areas.
Derivatives for ROSEBEM
BoundaryIntegralEquations.taylor_greens3d!
— Methodtaylor_greens3d!(integrand,r,k,m)
$m$th derivative of the Green's function w.r.t. the wavenumber.
\[G^{(m)}(r_j,k_0) = \frac{(\mathrm{i}r)^m\exp(\mathrm{i}k_0r)}{4\pi r_j}\]
BoundaryIntegralEquations.taylor_freens3d!
— Methodtaylor_freens3d!(integrand,r,interpolation,sources,normals,k0,m)
$m$th derivative of the normal derivative of the Green's function w.r.t. the wavenumber.
\[n\cdot \nabla G^{(m)}(r_j,k_0)\]
BoundaryIntegralEquations.taylor_greens_gradient3d!
— Methodtaylor_greens_gradient3d!(integrand,r,interpolation,sources,normals,k0,m)
Gradient of the $m$th derivative of the Green's function w.r.t. the wavenumber.
\[\nabla G^{(m)}(r_j,k_0)\]
BoundaryIntegralEquations.taylor_greens_tangential_gradient3d!
— Methodtaylor_greens_tangential_gradient3d!(integrand,r,interpolation,sources,normals,k0,m)
Tangential gradient of the $m$th derivative of the Green's function w.r.t. the wavenumber.
\[(\mathbf{I} - \mathbf{n}\mathbf{n}^\top)\nabla G^{(m)}(r_j,k_0)\]